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Comparison of Markov Chain Abstraction and
Monte Carlo Simulation for the Safety Assessment
of Autonomous Cars

Matthias Althoff and Alexander Mergel

Abstract—The probabilistic prediction of road traffic scenarios ~ situations are ignored. The majority of works on this tope u
is addressed. One result is a probabilistic occupancy of tffic  |earning mechanisms such as neural networks and autoregres
participants, the other result is the collision risk for autonomous sive exogenous models [37], [42], or filter techniques sw&h a
vehicles when executing a planned maneuver. The probabitis f ’ " :
occupancy of surrounding traffic participants helps to plan Kalman f'lt_e_rs [26], [33]. Another line of '_‘eseamh IS to_dﬂte
the maneuver of an autonomous vehicle, while the computed traffic participants on selected road sections and learmomot
collision risk helps to decide if a planned maneuver should patterns for anomaly detection. Developed learning tepres
be executed. Two methods for the probabilistic prediction &8 for motion patterns are e.g. clustering methods [20], hidde
presented and compared: Markov chain abstraction and Monte Markov models [30], and growing hidden Markov models

Carlo simulation. The performance of both methods is evaluted . LS . . .
with respect to the prediction of the probabilistic occuparcy [39]. The disadvantage of a prediction at fixed locationsi t

and the collision risk. For each comparison test we use the the predictions are specialized to this particular roadresy
same models generating the probabilistic behavior of traft and are probably not representative for other traffic ditnat
participants, where the generation of these data is not congred For the prediction of arbitrary traffic situations, simidais
to real wqud data. However, the resultg show independentlyof of traffic participants have been used [5], [18]. Due to the
the behavior generation that Markov chains are preferred fa the - . . .

efficiency of single simulations, these approaches aradyjre

probabilistic occupancy, while Monte Carlo simulation is dearly i ) ! St
preferred for determining the collision risk. widely implemented in cars, e.g. to initiate an emergenakbr

ing maneuver based on measures tikee to collision. Simu-
Index Terms—Safety assessment, threat level, autonomous cars

Markov chains, Monte Carlo simulation, probabilistic occupancy, lations of traffic participants are also computed in micopsc
crash probability, behavior prediction. traffic simulations [28], [38]. However, single simulat®do

not consider uncertainties in the measurements and actions

of other traffic participants, which may lead to unsatisfagt

collision predictions [25].

O NE of the main objectives of research on autonomous A more sophisticated threat assessment considers multiple

vehicles is to realize the vision of accident-free drivingimulations of other vehicles, considering different iadit

by exclusion of human errors. This can be done by fullytates and changes in their inputs (steering angle andezecel

autonomous vehicles or partly autonomous vehicles, Whigﬂon)_ Multiple simulations have been used in [22] to idfgnt

Only take over the COI’ItI’Ol When an aCCident iS, or iS almo%”ision_free maneuvers for triggering emergency brgkm']

inevitable. the simulations are randomly generated, one computes by a
In order to assess the safety of a planned maneuver, $gcalled Monte-Carlo method, which have been studied in

prediction of traffic participants is vital for the identifiton [4], [71-[9], [13] for the risk analysis of road traffic and in

of future threats. In contrast to predictive approachesy- nge], [40] for the related topic of air traffic safety.

predictive methods are based on the recording and evatuatio ongther method to compute the probabilistic behaviors of

of traffic situations that have resulted in dangerous sitnat traffic participants, is to abstract their behavior. Onerapph

see e.g. [1], [31]. However, this approach is only suitablg to linearize the system dynamics and compute with Gaussia

for driver warnings. Planned trajectories of autonomous cayjstriputions since the distribution remains Gaussiaeraét

cannot be evaluated with this method since the consequenggsar transformation [24]. Several linearizations resereting

when following these trajectories have to be predicted. different operation modes, such as stopping, or accefeyati
Behavior prediction has been mainly limited to humagre computed in [17]. The operation modes are probabilis-

drivers within theego vehicle (i.e. the vehicle for which the icajly switched and the switching is Markovian. Another

safety assessment is performed). This is motivated by refseagpproach is to abstract traffic participants by Markov chain
on driver assistant systems which warn drivers when damger@s presented in the previous works [2], [3].
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probabilistic prediction of traffic situations. However, arder bicycle ego car planned path J | other cars

to compare both techniques, an appropriate behavior modg|
has to be found to generate acceleration commands. For the
first time, the behavior models used in [7]-[9], [13] and [2], ~ of——F——————O @ - — Y- -
are analyzed according to the autocorrelation and the geera
spectral density. In addition, the abstraction of MarkoainB 10 : : : : : : '

. . . . . . . 60 80 100 120 140 160 180

is computed via simulation techniques instead of reacitabil

analysis as in [2], [3] for better accuracy. Accuracy hashier Fig. 1. Probabilistic occupancy of other traffic particifmat a certain point
been improved in the Markov chain approach by resolvirigtime. The result can be used for path planning of the egdrcarder to
an unnecessary over-approximation in the crash probabilft/0'd areas of high probability of occupancy.

computation and by using a more accurate vehicle model. The
efficiency of the Markov chain computations and the Monte
Carlo simulations have been increased, too: the Markowchai
computation has been sped up by reformulating it to a spars
matrix multiplication and applying on-the-fly cancellatiof

T
//ié% environment
non-relevant probabilities. The Monte Carlo simulatiosédn :
been sped up by computing with analytical solutions instead

of numerical solvers.

. . safety assessment }‘J
B. Organization ( )

In Sec. Il we give a detailed problem description. The
i ; i~i i~ i Fig. 2. Concept of the safety assessment: The environmesbseprovide
.mOde“ng of tre}ﬁ|c participants for the pr_edlc'uon IS. pI’BEﬂ'J the road geometry, static obstacles, and traffic partitiparhis information
in Sec. Ill. We !ntrOdgce Fhe Markov chain abstraction ar?j ths forwarded to the trajectory planner and the safety assassmodule. The
Monte Carlo simulation in Sec. IV and Sec. V, respectivelyrajectory is only executed when approved by the safetysassent module.
The probabilistic generation of acceleration commands is

presented in Sec. VI. The remainder of the paper is about the .
assessment of the Markov chain abstraction and the Montel N€ specialty of the proposed methods for the safety assess-

Carlo simulation. First, the results for the prediction bet Mentis that they can compute with the uncertainties pralide

probabilistic occupancy are compared in Sec. VII. Secondy the dynamic object detection. The probability distribns

the predicted crash probabilities are compared in Sec. v of measurements can be arbitrary and may have multiple
maxima due to multiple object hypotheses. In addition ts thi

uncertainty, there is another uncertainty regarding tharéu

) behavior of other traffic participants.
In order to get a better idea of the addressed problem, the

required information and the objectives are describedvibelo

autonomous car

trajectory
planner

sensors

A

Il. PROBLEM DESCRIPTION

B. Objectives

i i Incorporating the uncertainty from the obstacle detection
A. Required Information and the future behavior, this work predicts the future proba
The presented safety assessment requires the followlhitistic occupancy of obstacles on the road. The secondtresu

information: of this work is the probability of a crash for the autonomous
« the planned trajectory of the autonomous car, vehicle when following its planned path.
« the geometric description of the relevant road sections, The probabilistic occupancy of other traffic participants
« the position and geometry of static obstacles, allows to optimize the planned paths such that the autonemou

« the position, velocity, and classification of traffic parcar does not come to close to other traffic participants. This
ticipants (into cars, trucks, motorbikes, bicycles, and is illustrated in Fig. 1. The crash probability helps to dici
pedestrians). if a planned trajectory should be executed or not. If several

Note that the gathering of this data is not subject of thisajectories are planned, the safety assessment canfydereti

work. The planned trajectory of the ego car is known since tfgjeéctory with the least crash probability. The interantof
is internally planned. The geometric description of thevaht the safety assessment module with the sensor informatidn an

road sections can be exiracted from off-the-shelf na\@aﬂthe traje_ctqry planner is illustrated ?n Fi_g. 2. In order fmate
systems and fused with lane detection software. For lafe prediction fort € [0, ] after a time intervalA¢ based on
detection, one usually uses LIDAR sensors and cameras [2%W Sensor values, the computation has to be faster than real
The same sensors are generally used for the detectiontigie by a factor oft s /At.

static obstacles. The detection of traffic participants trel

estimation of their position and velocity is a challengiagk lIl. M ODELING OF TRAFFIC PARTICIPANTS

[10], [32]. Since this data is difficult to infer, the resulf o This work focuses on the safety assessment of autonomous
dynamic object detection is usually described by a probigbil cars driving on a road network, i.e. the motion of traffic
distribution. participants is constrained along designated roads. On tha
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account, the motion of traffic participants is modeled suatescribed by a mathematical model. In order to formulate

that traffic participants follow certain paths up to a certaithis model, the volumetric center of traffic participanteraj

accuracy. An alternative modeling for probabilistic pegiin - a path is denoted by, the velocity byv, and the absolute

in unstructured environments can be found e.g. in [35].  acceleration by:. The acceleration commandis normalized
The generated paths are located in the centers of lanes #ad varies fronj—1, 1], where—1 represents full braking and

can be followed. Possible lanes to be followed are extractedrepresents full acceleration. Further, the functje) is

from detected road sections by checking all possible dyivirintroduced which maps the path coordinatdo the radius

options, such adeft turn, right turn, go straight, left lane of curvature. The radius of the path determines the tanglenti

change, andright lane change. Possible driving paths of anacceleratior7, and the normal acceleration is denotediy.

exemplary road section using the aforementioned driving ophe differential equations for the vehicle dynamics are:

tions are shown in Fig. 3. In some traffic situations, addgio

paths which use lanes for oncoming traffic are required. This v 0<v<v™Vau<0

is the case when an obstacle (e.g. standing car) blocks a lane , e o T w B

Possible paths for such a scenario are shown in Fig. 4 and ® ~ T v AU>0 @)

can be obtained with the same methods used in the trajectory 0, v<0

planner, but applied to other traffic participants instethe subject to the constraints

ego car. The concept of generating paths which are followed

by a certain accuracy is also suggested in [17].

max
a

v, v=1<a

max
v <v ,

la| <a™, |a| = \/a% + a%, an =v?/p(s), ar = .
&)
Backwards driving on a lane is not considered; see (1)
(v = 0, v < 0). The positive acceleration dynamic changes
at the switching velocityv®™. The dynamics for) < v <
- v*W Vv 4 < 0 is based on tire friction, while the other one
vehicle f(s,5) path ' : path 2 is based on engine power which limits the acceleration when
segment 1 the torque forv > v*V is not causing wheel spin anymore.
f(s) Lo The constrainty < v™2* in (2) models the speed limit.
M s The other constraint models that the tire friction only wato
— > a limited absolute acceleration™** (Kamm'’s circle). The
Se constant™?* is chosen ag™** = 7 [m/s?] andv*" is chosen
according to the different classes of traffic participants
Fig. 3.  Probability distribution of the position of a veléchlong a path- The proposed model for the longitudinal dynamics is almost
aligned coordinate system. . . .
the same as used in [13]. The difference there is that the
acceleration command resulting in zero acceleration is- non
approaching vehicle standing vehicle zero. It is also remarked that the model in this work differs
10 | from the previous one in [2]. The new model is more accurate
which can be observed by plotting the acceleration over the
,,,,,,,, ] . velocity, and comparing it with the result of a high fidelity
= LI simulatiorf of an Audi Q7 in Fig. 5. Note that the peaks in
acceleration occur due to the torque converter of the automa
0 10 20 30 40 50 60 gear bOX.
A specialty of the proposed longitudinal dynamics is that
an analytical solution exists for constant This is beneficial
for the Monte Carlo simulation, introduced later.

Fig. 4. Evasion of a standing car with alternative paths.

A Lateral P|§tr|but|0n . _ Proposition 1 (Analytical Solution of (1)): The analytical
‘The deviation along generated paths is modeled by a pieggjytion of the longitudinal dynamics of traffic participarin
wise constant probability density functiof(d), where¢ is él) foru > 0 (u = const) andv > v** is

the lateral deviation from a driving path as shown in Fig.

3
The deviation probability of other traffic participants aétbe- (v(0)? + 20V ut)? — v(0)?
ginning of the prediction is set according to the measurémen s(t) = 5(0) + 305Y 4 ’
uncertainty of the obstacle detection. This distributiam ©e v(t) = /u(0)2 + 20" ut.
cross-faded over time to a distribution that has been obdthin _ _
from an averaging of traffic observations; see [11]. The analytical solutions of the cases< v < v*¥ V u <0
andv < 0 are trivial. O

B. Longitudinal Distribution
L . . 1Used values in this work: Car.3 [m/s], truck:4 [m/s], motorbike:8 [m/s],
In contrast to the path deviation, the longitudinal dynancycie: 1 [mis].

ics of traffic participants along a path can be much better2used software: veDYNA.
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VA
P3
X | X0 | X5 x4l
—Audi Q7 1 2 3 4 y S
N -— -0 =a"m*. % “u
N Fig. 6. Discretization of the state space.
2 The
% 20 20 instantiated for each relevant traffic participant aroureleégo
v [m/s] vehicle.
Fig. 5. Maximum acceleration of the Audi Q7 plotted over its velocity; .A Markov Chal_l’: IS a StOCha.StIC dyr.]amlc SyStem with
used parametersi™® — 7[m/s], v = 7.3 [m/s]. discrete state € N*. There are discrete time and continuous

time Markov chains. In this work, discrete time Markov chain
are used, such that € {t1,t,...,ts} wheret; is the
The correctness can be easily verified by inserting theisolut prediction horizon and; .1 — t, = T € RT is the time step

into (1). increment. The current state of Markov chains is not exactly
known, but probabilitiegp; = P(z = i) describe that the
C. Combined Distribution system is in state = i, which are combined to a probability

b\/eector p for all states. By definition, the probability vector
I;% the next time stepy,; is a linear combination of the
é%obability vector of the previous time step:

The driver task of velocity control and lane keeping can
assumed to be fairly independent; see [14], [21]. The sa
observation holds for autonomous vehicles whose vehi
control is separately developed for lateral and longitalin p(te+1) = @ p(te), 3)
dynamics [34], or whose control has negligible dependency ) N _
with respect to the safety assessment in road traffic. ThusV/ere® is referred to as the transition matrix. _
is assumed that the longitudinal probability distributipfs), Slnce the 0r|g|nal_ system has continuous state varla!oles,
obtained from the longitudinal dynamics (1), is indeperidef9ions of the continuous state space have to be assigned
from the lateral distribution so that the overall distriontis (© discrete states. In this work, a region C R* of the
#(s,8) = f(s) - f(6) as indicated in Fig. 3. It is emphasizedtontinuous state space of (1) is discretized in orthogoeitd ¢

that the lateral and the longitudinal distributigs) and f(s) ©f €qual size, resulting in rectangular cells, see Fig. & Th
refer to the volumetric center of the vehicle bodies. state space cells are denoted XXy where the index refers to

In this work, the lateral and the longitudinal probabilitfn€ value of the corresponding discrete state. In an anatogo
distribution are modeled as a piecewise constant disteibut Wy, the regionU/ = [—1,1] of the input space of (1) is
as shown in Fig. 3. An interval with constant probabilit)ﬂ'scret'zed into interval§’®. The indexa refers to the value
distribution along a path is denoted k% and by D for of the discrete inpuy. In order to distinguish between indices
a deviation interval. The region with constant probabilityef€rring to discrete state or input values, state indiges a
distribution spanned by, and D; is denoted byC,; (see subscripted and Latin, where input indices are supersatipt
Fig. 3), which is required later. and Greek. In order to obtain a continuous distribution from

The vehicle bodies and the occupancy of pedestrians gﬁz _propabi_lity vectorp, .it .is assumed that the probability
the road is modeled by rectangles whose size varies betw&iiribution is uniform within each cell.
the different types of traffic participants (cars, truckstar-

bikes/bicycles, and pedestrians). A. Transition Probabilities of the Markov Chain
The transition probabilities store the probabilities tha
IV. MARKOV CHAIN ABSTRACTION discrete state changes frofto i: ®;; = P(z(tp41) =

First, Markov chain abstraction is considered for predgti |z(¢x) = j). In this work, the transition probabilities depend
the longitudinal probability distribution. The technigquéor on the value of the discrete inpuyt too. For this reason,
the abstraction of dynamic systems with continuous statedifferent transition probability matri®® is computed for
variables to Markov chains are manifold, where many of theeach discrete input value, such that®y, = P(z(tx11) =
couple the time increment with the accuracy of the abswoacti i, y(tx1+1) = o|z(tk) = J, y(tr) = «).
see e.g. [19], [23]. However, this coupling is unfavorable i The transition probabilities are obtained by running
terms of real-time applicability, as a required approximat simulations starting from the initial cellX; under input
accuracy may lead to short time increments of probability € U*. The numberN of those simulations ending up in
updates — and consequently to too many update iterations tbell X; determines the transition probabilitgs;, = N /N2
cannot be handled in real-time. For this reason, the updatelhe input values are held constant during the simulation, bu
intervals and the approximation accuracy is decoupled ashave varying values from simulation to simulation. Sincesit
[27], [36]. assumed that the initial states and the inputs are uniformly

The abstraction, which is computed offline, allows thdistributed within cells, the initial states and the inpare
dynamics of a traffic participant (1) to be described by drawn from a uniform grid within the cells as illustrated in
Markov chain. During online operation, a Markov chain i§ig. 7.
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initi i i abstraction  jniti . - . s
initial simulation oninitial reachable increase the efficiency of the matrix multiplication (seg. e.
cell results ~— Ty cel cells .. . . .
[43]). The efficiency is even more increased when canceling
18 18 small probabilities irp after each time stefy, and normalizing
p afterwards such that its sum is one. This is reasonable
16 Y. 16 since completeness is not required. The valugelow which
E 14 X E 14 probgbilities are _cancgled is s_et_by the minimum prc_>beybi|it
> S > density £ which is uniform within each cell according to
12 L 12 |:| previous assumptions so that
10 10 1_5 _ SA’UA’LLAg, (4)
100 110 120 130 140 100 110 120 130 140 A A A » .
s [m] sim] wheres=, v, andu” are the cell lengths of position, velocity,

and input value. The default value éfis 0 (no cancelation),
Fig. 7. Simulation results of the original system (left) g¢hd corresponding ; i 10-3 Wi
probabilistic reachable set of the abstracting Markovreifaght). Both results gOOd results have been obtamed \{\Q_‘th: 1/1_6 107, ng_her
are obtained using the same initial cell and input cell. Agiton to a cell Values of§ reduce computation time, while decreasing the

is the more likely, the darker the color of the cell is. accuracy.

e . . V. MONTE CARLO SIMULATION
Another possibility to abstract a continuous dynamics to

a Markov chain is via reachability analysis as described in There exists a huge variety of Monte Carlo methods and
[2]. This technique is less accurate in terms of the regyltithus one cannot give a strict guidance on how to apply them in
transition probabilities, but makes it possible to compuﬁ:ﬁneral- However, most methods exhibit the following schem
complete abstractions, i.e. all states reachable by theagbsd 1) Generate inputs and initial states randomly.
Markov chain (cells with non-zero probability) cover allggo ~ 2) Perform a deterministic computation starting at the ini-
sible trajectories of the original system. Completeneska®a tial states subject to the randomly generated inputs.
it possible to guarantee that no crash occurs when the crasB) Aggregate the results of the individual computations int
probability is 0. However, a crash-free trajectory can also  the final result.
be guaranteed when the intersection between reachable road this work, the initial states and the input values have a
sections of traffic participants and the autonomous car gsecewise constant probability distribution in order torngare
empty. Reachable road sections can be computed as propakedesults with the Markov chain computations. The random
in [2]. Vehicles that do not pose a threat can be ignoraclues are obtained by the inverse transform method (sép [41
for the probabilistic computations which is also proposed according to the given piecewise constant probabilityridist
[17]. Since completeness is not required, the more accuratgtions. The deterministic computations for the longinadi
simulation technique is applied. dynamics are simply computed as presented in Prop. 1. The
aggregation of results is discussed in more detail below.

B. Computing Stochastic Reachable Sets using Markov Chains

The transition probabilities allow to compute the statd. Aggregation of Results
probabilities as shown in (3). The difference, howeverh&tt The aggregation of the results depends on the purpose
the transition probabilities incorporate the input prabigh of the Monte Carlo simulation. For the computation of the
too. In order to use the update scheme of a Markov chafsrobabilistic occupancy, it is checked in which segmeng)se
the state probability vector has to be redefined. Denoting of the followed path a simulation ends. For the computation
the joint probability of a state value and an input value as the crash probability, it is checked if a crash occurs. The
p{ == P(z = i,y = «a), the combined probability vector is detection of these events is formalized by indicator fuoi

defined as which use the general vectercontaining all variables of the
Monte Carlo simulation:
A I R TR O R N TR 1 - {LifS(I)GSi . qerash {LCfaSh
ind;"%(x) = ) ,  1ind®*®*(z) =
0, otherwise 0, otherw.

whered is the number of states ards the number of inputs.

Given this probability vector, the transition values havebe ~ Since in this work, all simulations have equal weight, the
organized in the transition matrix as probabilities of occupying a path region or causing a crash a

obtained by the relative number of simulations for which the

1 1 . . . .
¢y, 0 ... 0 ... P, 0 ... 0 indicator function isl.

o @, ... 0 ... 0 @3, ... 0

(=i
Il

B. Error Analysis

0 0 ... &z ... 0 0 ... @5 An intrinsic property of Monte Carlo simulation is that the
The rewritings allows to update the probabilities byesult of the computations is not deterministic, i.e. theute
p(trr1) = ®p(ty). The transition matrix® is sparse, i.e. differs from execution to execution. Obviously, this is dese
it does not contain many non-zero values which allows the samples for the deterministic simulation are randomly
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generated. Thus, the probability distributions are pdgddr B. Trajectory Weighting
from the exact solution. The good news, however, is that
the mean error scales wit }V where N, is the number of

simulations. This is a well known result from Monte Carl h h d raiect ) ted first
integration [41] of probability density functiong(z), and h these approaches, a random trajectory IS created 1irat, an

holds for the problems discussed herein. This can be shownaggirw_?r:ds |ts| Ilkellr}etshs IS evat\h:at_ed:[ €. a weight '?;g?f
reformulating the computations as a Monte Carlo integratié?D'g' € va uis 0 h efllanJu rajectories arle crea ﬁD {c an
using the indicator functions. The probabilify that the path process, but the final process is no longer after

positions is in S;, and the crash probability’, are computed a weight is assigned by the likeliness function. The inputs
as created in the aforementioned works are for the acceleratio

and the steering, while only the acceleration is of intenest
Pi = /indfeg(x)f(x) dx, p¢= /indcraSh(x)f(:v) dz.  this work. After removing the steering-related aspects,s-

called goal function for the computation of the likelineds o
the input trajectory is computed in [9], [13] as

Another way of creating random inputs is proposed in works
n Monte Carlo simulation of road traffic scenes [8], [9],]13

VI. GENERATION OFACCELERATION COMMANDS

An important influence on the outcome of the probabilistic Nu
predictions are given by the sequence of probabilisticlacce g(u) = — Z (M (v(tr) — v™)* + Aaar(te)® + Asan (tx)?)
ation commands over time. Two methods for the generation of k=1

acceleration commands are presented and then compared.Where A;—\3; are tuning parameters which punish velocity
first one is a Markov chain approach as presented in [2]. THeviations from the allowed velocity, and large normal adl we
other one is an approach based on Monte Carlo simulatias tangential accelerations. The probability distribuiid the
as presented in [8], [9], [13]. In all approaches, the inpunput trajectoriesf(u) is assumed to b¢(u) = ¢, exp(ky -
value is held constant for a certain time span. In this work(u)), where the previously introduced goal function is in the
this time span is chosen as for the time increniEntf the exponent. The valug, is another tuning parameter angl is
Markov chain abstraction. The comparison of the generatdte normalization constant.

acceleration commands to real world measurements is future

work.

] C. Comparison
A. Markov Chain Approach

In [2], not only the state transitions, but also the prokiatid Continuous input val_ues genergted_ from the Markov chain
acceleration values are generated by Markov chains. As m@RProach and the trajectory weighting approach are com-
tioned above, the acceleration commands are held cons@@fed according to their autocorrelation and their average
during the time intervalgt, tx,1] and are changed instanﬂyspectral density. Continuous input values are obtainenh fro

at timest,. The probability that the input value changes fot€ discrete inputs of the Markov chain approach by the
a given state value, is described by the input transitionesl previously mentioned inverse transform method. The input
Fqﬁ(tk) = P(2(t)) = i,y(t,) = alz(ty) = i,y(ts) = B) trajectories for both approaches are generated with paeasne

wheret!, = t;, + 5t andét is an infinitesimal time step. ThoseliSted in Tab. I forN,, = 10, where N, is the number of
transition values are combined into an input transitionrixat time steps. The Monte Carlo simulation parameters are taken

f(tk) similarly as for the state transition matrix from [8]. The initial velocity is uniformly distributed wiitin
v(0) = 15+ 1 m/s, which affects the input generation due to
it 2 e o 0 0 0 the speed limit. The considered time horizortjs=5 s, and
1“%1 1“%2 F%c o .. 0 o . o the number of computed simulations§ = 10°.
. 7 I
F =
: : : TABLE |
0 0 o 0 0O ... 0 1’\21 o 1"20 PARAMETERS FOR INPUT TRAJECTORY GENERATION
In contrast to the computation of the transition matbixor General
the states, the transition matricE$t;) for the input cannot :vr‘“'“"‘ 3050/3-6 m/s
. . .0 S
be computed ba:'sed on a reasonably simple Qynamlc model Trajectory welghting: See [13]
(due to complexity of human behavior or decision systems Ty 100
of autonomous vehicles). As a consequence, the transition A1 0.05/Nu/(1+v(g)2)
matricesT'(t;) have to be learned by observation or set by i2 8-82;%;2“’“;2
R . . R . L. 3 . w gmax
a com.blnatlon. of offline ;lmqlatlons and hegr|5t|cs, whére _t Markov chain: 566 [2]
latter is used in [2] considering the constraints of the ekehi m [0.01,0.04,0.25,0.25,0.4, 0.05]
model in (2). q(0)  [0,0,0.5,0.5,0, 0]
Combining the input and the state transition matrix yields il 0.2

the extended formula of the Markov chain update for time
varying input probabilities:

ﬁ(tk+1) = F(tk) ‘bﬁ(tk)- (5) 31ID: independent and identically distributed.
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1) Autocorrelation: The autocorrelation, i.e. the correlation The Fourier transform makes it possible to formulate the
of the signal against a time-shifted version of itself is wledi following relation between the time and frequency domain:

as
oo oo rect (7t — (k; 0'5)T) o—e jTsi(mfT)e 27 f(k=05)T
S(t.7) = Bla@u() = [ [ w flunn) dus dus,
—00 J—o0 ©) For the whole input signal, the Fourier transforntigf) =
. . : . ) Tsi(mfT)ed™ T S0 u(ty)e 727+ from which follows
where E[] is the expectationf () is the probability density the spectral densith(f). =

function, andu_t IS a reahzatlon_of the random var_|au1{t). . The expectatio®[u(t;)u(t;)] is obtained from the autocor-
The computation of the above integrals is approximatedgusin .. . . .
. . relation in (6). The expectations of spectral densifi¢g) are
Monte Carlo integration. . : N .
h lati | for the | i , visualized in Fig. 9. It can be seen that the lower frequencie
The ‘autocorrelation values for the input trajectories alg, mare dominant in the Markov chain approach, while the

plott_ed in Fig._8. Ther_e s almo_st no cor_relation b?tw‘?ef?equency distribution of the trajectory weighting apprbas
the inputs of different time steps in the trajectory weigbti . se to an IID process with uniform distribution.
approach as shown in Fig. 8(a). This is in contrast to the

Markov chain approach, where the input signals are much
more correlated; see Fig. 8(b). <«— Markov chain approach
nH trajectory weighting approach

038 <« uniform 11D process
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(a) Trajectory weighting approach.  (b) Markov chain approach. Fig. 9. Average spectral density of input trajectories.
Fig. 8. Autocorrelation of input trajectories. A general observation in road traffic is that drivers change
their acceleration with low frequency and that their inparts

2) Average Spectral Density: Besides the autocorrelation,higmy correlated. In both tests, the autocorrelation amel t
the spectral density of input signals is compared for a deegwerage spectral density test, the acceleration inputstezie
analysis. The spectral density describes how the energy opyathe Markov chain showed more realistic behavior.
signal is distributed over its frequency, where the eneffgg o
signal z(t) is defined as/”_|z(t)|*dt in signal processing. VIl. COMPARISON OFPROBABILISTIC OCCUPANCY

N: ) )
The spectral density is defined @8 (f)|", whereX(f) isthe |, this section, acceleration commands from the previously
Fourlertransf_orm_ of:(t). For_the_z analysis (_)f several 'nStanceﬁresented Monte Carlo and Markov chain approach are used
of a stochastic signal, one is mtergsted in the expectationy, compare the probability distribution of traffic partieipts.

the random spectral density[|X(f)[*]. For each comparison, the same model for generating the

Proposition 2 (Average Spectral Density):The average of acceleration commands is used, which ensures compayabilit
the spectral densityb(f) = E[U(f)|?] for input signals of the distributions. Since the final probabilistic occupan
u(t), which are piecewise constant for time incremefitsis 1S Simply obtained byf(s,d) = f(s) - f(6), where f(6) is

computed as heuristically obtained, the following comparison is abg)
and the distribution of the velocit§(v) as an auxiliary result.
Ny Ny ‘ The computed piecewise constant probability distribugion
O(f) =T?si(nfT) Y Y Elu(tp)u(ty)]e 7> T*=D " of f(s) and f(v) with probabilitiesp; for certain intervals, are
k=11=1 compared by the distance
whereN,, is the number of time steps ard (z) = sin(x)/z .
is the sinc function. O d= Z Ipi = PV (Xa),
Proof: where p® is the exact probability distribution. The multipli-

The input signalu(t) is constant within consecutive timecation with the volumé/(X;) of the cellsX; is required in
intervals|ty, tx+1], wheret,; — t, = T. This can be written order to compare results of different discretization.

as For the numerical experiments, two different Markov chain
Ny t— (k—0.5)T discretizations are used as listed in Tab. Il. The cancelaif
u(t) = ZU(tk)rect ( T ) ) small probability values is performed as suggested in (4) wi

k=1 §=1/16- 10~3. The Monte Carlo approach used in the nu-
whererect(t) is 1 for —0.5 < ¢ < 0.5 and0 otherwise. merical experiment is performed wittd* simulations. Since
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TABLE Il Exact Monte Carlo Markov Chain A
STATE SPACE DISCRETIZATIONS FOR A POSITION INTERVAL OF0, 400] M 0.2 0.2 0.2
AND A VELOCITY INTERVAL OF [0, 60] M/s. 2 2 2
5 5 3
€01 T 0.1 T 01
position position velocity velocity 2 2 e
discretization  segments  resolution segments  resolution o o o
A 80 5m 30 2 m/s 0 100 0 100 0 100
B 320 1.25 m 120 0.5 m/s s [m] s [m] s[m]
Exact Monte Carlo Markov Chain A
202 202 202
there is no exact solution for the presented scenario, aostlm €, g o1 804
. . . . o = o v o v
exact solution was computed with Monte Carlo simulation = = =
using 107 samples. The acceleration command is generate % 20 % 20 % 20
by a Markov chain using the parameters in Tab. I. The initia. v [mis] v [mis] v [m/s]
position and the initial VeIOCIty are unlformly distribatén the Fig. 10. Road following scenario: Position and velocitytidimition for a

intervals[2, 8] m and[15, 17] m/s, respectively. The probability coarse discretizatiort (= 5 ). Inputs generated by the Markov chain approach
distributions are Compared at=5 s. result in the black distribution, while Monte Carlo genethinputs result in

The resulting position and velocity distribution for difeat ¢ 9@ distribution.

discretizations and inputs can be found in Fig. 10 and 11

Exact Monte Carlo Markov Chain B

The distance measuke for all tested combinations of input . 2 o004 < 0.0
generations, prediction techniques, and discretizaiohisted = =7 £
in Tab. Ill. Since the Monte Carlo approach delivers diffdére g 0.02 g 0.02 }é 0.02
results for each run]00 runs have been computed and the © o = o = o
minimum, maximum, and mean value are shown. The resuli 0 s[ﬁf])o 0 s[ﬁf])o 0 S[ﬁgo
are fairly independent from the input generation, except th _

. Exact Monte Carlo Markov Chain B
the Markov chain approach performs better when Monte Carl 0.06 0.06
generated inputs are used. This is because the probalility = ) 2
low velocities is high for those inputs so that the Markovioha £ > 300 goo
specific problem of flattening distributions is limited taghi ~ § %% g 002 g 002

velocities. The computational times can be found in Tab. IV 0 20 % 20 % 20
which are obtained from an AMD Athlon64 3700+ processol v [mis] v [m/s] v [m/s]
(§|ngle .Core) using a Matl.ab Impl.ementatlon. The Monte 6:arlzig. 11. Road following scenario: Position and velocitytdisition for a
simulation has been obtained using the Runge-Kutta soher gine discretization f{= 5 s). Inputs generated by the Markov chain approach
the analytic solution as presented in Prop. 1. Ultimatelg, t result in the black distribution, while Monte Carlo genethinputs result in
Markov chain solution is faster than the analytically obeal the gray distribution.

Monte Carlo solution and the discretization of the Markov

chain B is fine enough to produce results that are more Finally,

v X it was analyzed if the quality of the probability
accurate than the Monte Carlo approach with simulations.

distributions depends on the initial condition. As the odhi

TABLE Il
DISTANCE MEASUREA.
res. A res. A res. B res. B
position  velocity  position  velocity
Input generation: Markov chain
Monte Carlo: min| 0.0594  0.0218 0.05600  0.0166
max | 0.2393 0.0783 0.0905 0.0331
mean | 0.1327 0.0512 0.0677 0.0259
Markov chain: 1.0882 0.3425 0.0346  0.0121
Input generation: Monte Carlo
Monte Carlo: min| 0.0885 0.0212 0.0573  0.0186
max | 0.2169 0.0985 0.0936 0.0338
mean | 0.1485 0.0518 0.0752 0.0261
Markov chain: 0.8438 0.1272 0.0165 0.0056
TABLE IV

COMPUTATIONAL TIMES OF THE ROAD FOLLOWING SCENARIO

Monte Carlo  Monte Carlo  Markov chaid  Markov chainB
(simulated) (analytical)
3.44 s 0.578 s 0.030 s 0.417 s

model (1) is invariant under translations in position, it is
only necessary to vary the initial velocity. The influence
on the initial velocity on the distanced’®s, dv¢ of the
position and velocity is shown in Fig. 12. The Monte Carlo
simulations are performed with0* samples and the Markov
chain approach was computed with tBemodel. In contrast to
the previous computations, the speed Ilimitl66/3.6 m/s has
been removed so that initial velocities above this speedean
investigated. It can be seen that the dependence on thal initi
velocity and thus on the initial state can be neglected, ingan
that the results in Fig. 10 and Fig. 11 are representative. Th
small dependence on the initial state makes it possiblerte tu
the discretization based on a single initial distributitfthe
distance measuréd of the position or velocity is too high,
one can make the corresponding discretization finer urdil th
desired accuracy is achieved, which should approximataly h
for all other conditions.

VIIl. COMPARISON OFCRASH PROBABILITIES

In this work, the crash probability of different time intats
is computed independently of previous crash probabilities
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—o— Monte Carlo —o— Monte Carlo storing the results for different relative positions, otaions,
0.15 L Markov Chain 0.04 | —Markov Chain and types of traffic participants in a database. In the previo
work [2], p.iqr;fef was conservatively chosen tb when an
intersection is possible.

Using the introduced variables, the crash probability be-
tween the autonomous vehicle and another vehicle can be

10 20 30 10 20 30 formulated as
Initial velocity v(0) [m/s] Initial velocity v(0) [m/s]
. " L . e C _ int sego
(a) Distanced of the position distri-(b) Distanced of the velocity distri- p = Z Pghes Py Pef-
bution. bution. g.hye, f

Fig. 12. Distancel to the exact solution for different initial velocites. ~~ The summation over all possible indicesh, e, f is compu-
tationally expensive. For this reason, techniques to tffely
search for combinations of path and deviation indices which

This has the advantage that for each time interval, a manpotent'a”y cause a vehicle body intersection’ are presbmt

can be judged independently of previous occurrences. Bhigpe previous work [2].

not the case, when computing the physical probability that a2) Monte Carlo Smulation: The crash probability for the

crash will happen. Consider a scenario in which two situnstio Monte Carlo approach is S|mp|y obtained by Summing up

are equally dangerous at two different points in time. Hovev the probabilities of simulations that have crashed. Not th
the probability that the vehicle crashes in the first sitiais  simulations resulting in a crash are not removed from the-com
greater than in the second situation. This is because a crggffation in order to obtain crash probabilities in comptian
can only occur in the second situation, if the vehicle siwetliv \ith the aforementioned definition of the crash probability

the first one and crashes in the second one. For this reason, jt is crucial that the detection of a crash is computatignall

is assumed that the autonomous vehicle has not crashed WHBap. Crashes are detected by checking if the rectangular

the investigated time interval. vehicle bodies intersect. An efficient method to detect the
The crash probability is computed for consecutive timitersection of two rectangles, is the separating axisrérmo

intervals, since one may miss a high crash probability wheng). An extension considering the velocity of objects is
only computing for points in time. This is achieved in thgyresented in [12].

Monte Carlo simulation by computing for sufficient interme-
diate points in time within a time interval. When using Ma¥ko g crash Scenario
chains, an additional transition matrix for time intervads

computed offline:dinterval — 1 Zﬁ ) where &) The crash probabilities are investigated for a scenariaavhe
: T B Lek=1 J

are transition probability matrices for intermediate psim the autonomious car drives behind anothgrcar n the same lane
time ;. The probability distribution for time intervals is thenThe gutonomous car starts "0”.‘ the pOSIM with congtant
computed agi(ty)imteval — dinterval (4 ) wherep(ty) is velocity 20 m/s _and h.a_s a _unn‘orm position _uncertalnt.y_ of
computed in (5). +3 m. The vehicle driving in fron_t _h_as a unl_forl_”n pc_)smon
uncertainty of[20,25] m and the initial velocity is within
_ - [15,17] m/s. The other parameters are as listed in Tab. I, and
A. Computation of Crash Probabilities the considered time horizon is = 5 s. The (almost) exact
The computation of crash probabilities is separately diselution is obtained from a Monte Carlo simulation with®
cussed for the Markov chain abstraction and the Monte Cadnulations.
simulation. The crash probability of the Markov chain approach is
1) Markov Chain Abstraction: When using the Markov compared to the exact solution with a coarse and a fine
chain abstraction, one has to compute the probabilistic afiscretization using mode# and B (see Tab. Il) and for
cupancy as an intermediate step. In order to describe {gints in time (TP) as well as time intervals (T1). The crash
probabilistic occupancy, some additional notations havbe probabilities p¢ for different time steps/time intervals are
introduced. The region spanned by the path position intenghown in Fig. 13. It can be observed that the fine discretinati
S. and the deviation intervaD; is denoted byC.; (see produces much better results than the coarse discretizatio
Fig. 3). The probability that the center of a vehicle is in Besides different Markov chain models, Monte Carlo so-
a regionC.y is denoted byp.;. The probabilities for the |utions were tested for a varying number of samples; see
autonomous car are indicated by the superscegut (e.9. Fig. 13(c). The results show that the crash probability is/ve
Pyr,)- It is required to additionally introduce the probabilityaccurate, even when only? or 10> samples are used. For this
Py that two bodies of the ego vehicle and another vehicteason, it can be clearly stated that the Monte Carlo sinulat
intersect when the center of the ego vehicle body is ferforms better than the Markov chain approach when the
Coi and that of the other vehicle i@V.;. This probability crash probability has to be computed. This is reconfirmed by
is computed by gridding the regiorﬁz,gf, C.s and testing the computational times in Tab. V, where the Monte Carlo
for all combinations of centers if an intersection of ve&iclapproach is more efficient. The computational times for the
bodies exists. The relative number of intersections pewidMarkov chain approach are separated into the part for comput
the intersection probability. This computation is expeasso ing the probability distribution and the part that intettseihe
that the intersection probabilities are precomputed @&fliy probability distributions to obtain the crash probabilifyhe
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computations were performed on an AMD Athlon64 3700sampling of the initial conditions and the input sequences.

processor (single core) using a Matlab implementation.

TABLE V

COMPUTATIONAL TIMES OF THE CRASH SCENARIO

Markov chain
A (TP) A (TI) B (TP) B (TI)
Prob. dist.  0.175 s 0.175 s 0.525 s 0.525 s
Intersection 0.042 s 0.107 s 0.169 s 0.394 s
Total 0.217 s 0.282 s 0.694 s 0.919 s
Monte Carlo simulation
1e2 (sim.) 1e3 (sim.) 1e2 (analy.) 1e3 (analy.)
Total 0.190 s 0.549 s 0.069 s 0.321 s
1 1
—<— exact solution ——exact solution
08 —6— Markov chain (TI) 08 —e— Markov chain (Tl)
- —a— Markov chain (TP) - —a— Markov chain (TP)
';; 06 :; 06
o <]
204 204
v )
0.2 0.2
0 0

time t [s]

(@) Markov chain comparison (digb) Markov chain comparison (dis- ‘

cretization A).

1 2 3 4
time t [s]

cretization B).

o
)

—— exact solution
—e— Monte Carlo: 1e3 samples
—=— Monte Carlo: 1e2 samples

o
o

I
IS

crash probability

o
[N

time t [s]

(c) Monte Carlo comparison.

Fig. 13. Crash probabilities for different points in time.

IX. CONCLUSIONS

The Markov chain approach and the Monte Carlo approac;
have some inherent differences concerning their errorcesur
The main error in the Markov chain approach is introduce
due to the discretization of the state and input space. T

Due to the probabilistic errors, the resulting distribnscand
crash probabilities differ from execution to execution end
unchanged initial conditions. This implies that the obtain
results might be far off the exact solution — however, the
likeliness of an extremely bad result is small and the mean
error converges Witth, whereN; is the number of samples.

The resulting pro@ility distributions of the Markov chai
approach are slightly more accurate and faster than for the
Monte Carlo simulation if an analytical solution exists. &vh
no analytical solution exists, the Markov chain approach
is at least aboutl0 times faster. Because there are many
matrix multiplications in the Markov chain approach, it can
be significantly accelerated by using dedicated hardwark su
as DSPs (digital signal processors). However, when comguti
crash probabilities, the Monte Carlo approach clearlyrretu
better results since it does not suffer from the discraétinat
of the state space.

The results can be directly implemented in an autonomous
car. A screenshot of the probabilistic prediction in thet tes
vehicle MUCCI [15] is shown in Fig. 14.

X C3 Video with (c) 2007 Matthias Goebl (m¢ =0 x/[ X B7 Safety Verifi (Lehrstuhl far und Jal*

Fig. 14. Screenshot of a test drive. The probabilistic oacap of the other
car is computed via the Markov chain abstraction.
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